
Developing secure Java Card applications

Jan Vossaert Jorn Lapon Vincent Naessens

June 9, 2010

1 Introduction

This tutorial covers the basic steps towards secure smart card application development with
the Java Card platform. Crucial knowledge of smart cards and the Java Card platform for
application developers are discussed. Multiple steps during the development of Java Card
applications are discussed. Each section also contains one or more practical assignments.
All files that are required to execute the assignments are compressed in a zip file, namely
javacardtutorial.zip1.

1.1 Smart card basics

Java Card technology adapts the Java platform for use on devices with limited memory and
processing power. A common platform on which the Java Card technology is widely used is
smart cards. Multiple aspects of smart cards, such as physical characteristics, transmission
protocols and their security architecture are defined by the international standard ISO/IEC
7816 [1]. Smart cards are often used in environments with strong security requirements. Exam-
ples are electronic identity cards, credit cards, membership cards . . . The card performs certain
cryptographic operations such as encryptions and digital signatures. Many smart cards, there-
fore, provide cryptographic coprocessors that accelerate cryptographic operations. However,
the Java Card platform is a card-independent high level interface that hides the complex-
ity of the underlying coprocessor and the manufacturer-specific implementation details and
technologies.

1.2 Smart card communication

Smart cards communicate with host applications through a request-response protocol in which
application protocol data units (APDU’s) are exchanged. Two types of APDU’s exist, namely
Command and Response APDU’s. The former are sent by the host application to the card. The
latter are sent by the card, as a response to a C-APDU, to the host application.

Mandatory header Optional body

CLA INS P1 P2 Lc Data field Le

Table 1: The C-APDU structure.

1. The file can be downloaded from http://www.msec.be/jan/javacardtutorial.zip

1

A C-APDU consists of a required header and an optional body, as illustrated in Table 1. The CLA
byte defines an application-specific class of instructions. According to the ISO7816 standard,
byte values between 0xB0 and CF can be used. The INS byte defines a specific instruction
within the class of instructions defined by the CLA byte. For valid CLA values, the application
developer can define his own application specific instructions. The P1 and P2 fields can be
used to further qualify the instruction and to provide input data respectively. The other fields
are optional: the Lc field defines the number of data bytes in the data field; the Data field
can contain up to 255 bytes of data; and the Le field defines the maximum number of bytes
in the data field of the R-APDU.

Optional body Mandatory trailer

Data field SW1 SW2

Table 2: The R-APDU structure.

An R-APDU consists of an optional body and mandatory trailer. The Data field contains
the response data, maximum 255 bytes, returned by the applet. The fields SW1 and SW2

provide feedback about the execution of the C-APDU. Several status words are predefined
in the ISO7816 standard. The status word 0x9000 represents successful execution of the
command.

Figure 1: Overview of the possible C/R-APDU combinations.

1.3 Java Card Virtual Machine

The Java Card virtual machine (JCVM) is split in two components. One component runs
at the machine of the developer. It verifies Java classes and converts the Java classes to
a CAP (Converted Applet) file. A CAP file keeps all classes in a loadable, executable binary
representation. The other component runs at the card. Amongst other things, it interprets
the byte code and manages the objects. This separation results in a smaller memory footprint
on the card. It, however, introduces additional overhead to application developers.

Due to the memory and processing constraints of smart cards, the JCVM only supports a subset
of the Java programming language. For example, the types char, double, float, long are
not supported. Support for int is optional. Moreover, the Java core API classes and interfaces
(java.io, java.lang and java.util) are not supported except for Object and Throwable.
Further, threads, the security manager and object cloning are not available. For a full overview
of the restrictions of the JCVM, we refer to the documentation in the JCDK [2].

1.4 Java Card Runtime Environment

The Java Card runtime environment (JCRE) is responsible for card resource management,
applet execution, applet security . . . It separates applets from the proprietary technologies of

2

smart card vendors and provides standard system and API interfaces for applets. The JCRE

starts executing once the card is inserted in the card reader. It does not resume execution
where the previous session ended but starts at the beginning of the main loop. The JCRE

waits for APDU commands from the host. When a command arrives, the JCRE either selects
an applet – if instructed in the command – or forwards the command to the applet that was
already selected at the previous step. The selected applet then takes control and processes
the APDU command.

The JCRE also ensures that each applet is executed in an isolated environment and can,
therefore, not influence other applets on the card. This is realized by the – so called – applet
firewall. It is enforced by the JCVM during byte code execution.

The JCRE allows for multiple Java Card applets on one smart card. Each applet is uniquely
identified by means of an application identifier (AID). An AID is a byte array consisting of
around 12 bytes. The structure is defined in the ISO7816 standard.

1.5 TOP IM GX4 and TOP DM GX4

Two types of Java Cards [3, 4] are used in this tutorial. Both are compatible with the Java
Card 2.2.1 and GlobalPlatform 2.1.1 specifications [5]. The DM version provides a dual in-
terface (contact and contactless) while the IM is solely a contact card. They both have an
approximate available memory size of 68K and support multiple cryptographic algorithms
such as RSA, AES and SHA1.

2 Basic smart card applications

This section introduces the base classes of the Java Card Framework, discusses the basic
structure of every Java Card applet and provides some guidelines for Java Card development.

2.1 Java Card Framework

The base package of the framework, javacard.framework, defines the interfaces, classes and
exceptions at the core of the Java Card Framework. It defines important concepts such as
the Personal Identification Number (PIN), the Application Protocol Data Unit (APDU), the
Java Card applet (Applet), the Java Card System (JCSystem), and a utility class. It also de-
fines various ISO 7816 constants and various Java Card-specific exceptions. The API is online
available at http://raud.ut.ee/~tec/static/api/javacard2.1.1/javacard/framework/
package-summary.html. It is also contained in the Java Card Development Kit (see assign-
ment 1).

The basic structure of a Java Card applet is given in Listing 1. It extends the Applet base class
and must implement the install() and process() methods. The JCRE calls the install()

method when the applet is installed on the card. The process() method is called by the
JCRE upon arrival of an C-APDU for the corresponding applet. The select() and deselect()

methods are optional and are respectively called by the JCRE upon selection and deselection
of the applet. The select() method returns true if the applet is ready to process incoming

3

APDU’s, or false to decline selection. The deselect() method can, for instance, be used for
session termination code.

1 package be . demo ;

3 import javacard . framework .APDU;
import javacard . framework . Applet ;

5 import javacard . framework . ISOException ;

7 pub l i c c l a s s Demo extends Applet {

9 p r i v a t e Demo() {
super () ;

11 r e g i s t e r () ;
}

13
pub l i c s t a t i c void i n s t a l l (byte bArray [] , shor t bOffset ,

15 byte bLength) throws ISOException {
new Demo () ;

17 }

19 pub l i c void proce s s (APDU arg0) throws ISOException {
// TODO Auto−generated method stub

21 }

23 pub l i c boolean s e l e c t (){ re turn true ;}

25 pub l i c void d e s e l e c t (){}
}

Listing 1: Basic structure of a Java Card applet.

2.2 Guidelines for Java Card development

• PIN codes and keys may not be stored in primitive arrays. The Java Card API pro-
vides the class OwnerPIN that implements the PIN interface and provides protection
against attacks based on program flow prediction. Information about the usage of
cryptographic keys can be found in section 6.

• Temporary session data are stored in transient arrays2. The API provides methods for
creating transient data arrays: JCSystem.makeTransientByteArray(short length,

byte memType). This method creates a transient byte array in memory type memType

of a certain length. Analogous methods exist for other types of arrays.
• Constants are declared as static final to reduce memory load.
• Instantiate all objects during initialization, typically in the constructor of the applet,

to avoid running out of memory at runtime. This also includes the creation of transient
objects.

2. Two types of transient memory are available: JCSystem.MEMORY TYPE TRANSIENT RESET and
JCSystem.MEMORY TYPE TRANSIENT DESELECT. The former memory type is cleared when the card is re-
moved from the reader while the latter is cleared upon deselection of the applet. Persistent memory holds its
values over different sessions.

4

• Use the Java Card API for transactions if multiple values need to be updated simul-
taneously: JCSystem.beginTransaction(), JCSystem.commitTransaction() and
JCSystem.abortTransaction(). Note, however, that the transaction buffer capacity
is finite. The sections that are protected by a transaction should, therefore, only contain
the operations that are strictly necessary.

Assignment: Set up the development environment (Windows).
Download the JCDK3. The smart cards in this tutorial support the Java Card 2.2.1 framework.
Eclipse4 is used as IDE for the development of Java Card applets. To integrate the functionality
of the JCDK, the eclipseJCDE must be downloaded and installed. This is either done by using
the Install new software feature5 of eclipse or by copying the eclipseJCDE jar files6 in the
plugin directory of eclipse. The plugin can only be used with Java Cards 2.2.2. However,
after copying (and overwriting) the jar file org.eclipsejcde.core 0.1.0.jar7, the plugin
becomes compatible with Java Cards 2.2.x. The location of the JCDK needs to be specified
in order to use the plugin (see figure 2). Finally, the environment variable JC HOME must
reference to the JCDK main directory (see Figure 3).

Figure 2: Set location of the JCDK.

Figure 3: Setting the environment variable JC HOME.

Assignment: Create Java Card project.
Java Card projects can now be created through the eclipse wizard (see Figure 4). Call your
project Tutorial. Use the wizard to create an IdentityCard applet in package be.msec.smartcard.
Select the default values for the applet and package AID. Note that the @Override annotation,
possibly generated by eclipse, is not supported and should, therefore, be removed.

Assignment: Paste and analyze identity card code.
An identity card application is used throughout the tutorial for demonstrator purposes. The
applet manages an identity file which can be released after the PIN was entered correctly.

3. Different versions of the development kit can be found at:
http://java.sun.com/javacard/downloads/index.jsp

4. Several Eclipse distributions can be downloaded from http://www.eclipse.org/.
5. Choose the Add site option and use the following url: http://sourceforge.net/projects/eclipse-jcde/.
6. The plugin can be downloaded from http://eclipse-jcde.sourceforge.net/.
7. This file is included in smartcardtutorial.zip.

5

Figure 4: Create Java Card project with the eclipse wizard.

The demonstrator is later extended with signing operations and operations to securely up-
date the identity file. To simplify the design, several attributes – such as keys – are hard-
coded in the applet. Replace the code of the previously created applet by the code found in
BasicCardAssignment.txt. Analyze the new applet.

3 Simulating smart card applications

Before the application is deployed, it can be tested using simulators provided with the JCDK.

• The JCWDE simulator can run applets in debug mode. However, several cryptographic
algorithms are not or only partially available. For instance, several padding schemes
are not implemented and RSA keys are limited to 512 bits, while several smart cards
support up to 2048 bits. Moreover, it is not possible to store the state of an applet and
resume execution later.

• The CREF simulator can store the state of applets. Debugging is not possible with this
simulator (i.e. no breakpoints can be set).

The JCWDE simulator is selected during this tutorial since debugging – which is an important
feature – is only supported by this simulator. Using the CREF simulator is similar and explained
in the Java Card documentation. The JCWDE simulator can run in normal and debug mode,
see Figure 5.

Figure 5: Starting the Java Card simulator

To test the applet, APDU commands are sent to the simulated applet. Commands can be sent
through the command line – using the apdutool – or with a self-written Java program that
creates and sends the appropriate APDU commands. The latter requires apduio.jar in the
classpath to enable communication with the simulator.

6

3.1 apdutool

This tool can be executed via the command line (see Figure 6). The user can enter byte
arrays – representing APDU commands – and send them to the (simulated) applet. The tool
also visualizes the applet’s response. Instead of manually entering the APDU commands, a
script can be passed.

Figure 6: Using the apdutool to send and receive APDU’s.

Assignment: Test the simulated applet with apdutool.
Simulate the IdentityCard applet and execute the scripts in apdutoolAssignment.zip with
the apdutool. Evaluate the APDU’s sent and received from the applet. Add a command to
retrieve the identity file from the card.

3.2 apduio.jar

The jar file apduio.jar is found in the lib directory of the JCDK and enables exchanging
APDU’s with the simulator in Java programs. An example can be found in Listing 2. In this
example a select applet command is sent to the applet. The simulator is initialized using the
powerUp and terminated using the powerDown method. Once the simulator is terminated,
the state of the applet caused by the prior commands is lost.

pub l i c void s e l e c t A p p l e t (byte [] a id){
2 connectToSimulator () ;

powerUp () ;
4 // send a s e l e c t app le t APDU

transmitAPDU ((byte)0 x00 , (byte)0xA4 , (byte)0 x04 , (byte)0 x00 , aid , 1 2 7) ;
6 / / . . . o ther commands can be send to the s imu la tor here

powerDown () ;
8 }

10 pub l i c Apdu transmitAPDU (byte c la , byte ins , byte p1 , byte p2 ,
byte [] data , i n t l e) throws IOException , TLP224Exception{

12 Apdu apdu = new Apdu () ;
apdu . command[0]= c l a ;

14 apdu . command[1]= i n s ;
apdu . command[2]= p1 ;

16 apdu . command[3]= p2 ;
i f (data != n u l l) apdu . setDataIn (data) ;

7

18 apdu . Le=l e ;
t ransmit (apdu) ;

20 re turn apdu ;
}

22
pub l i c void connectToSimulator ()

24 throws java . i o . IOException , java . net . UnknownHostException{
sock = new Socket (” l o c a l h o s t ” , 9025) ;

26 InputStream i s = sock . getInputStream () ;
OutputStream os = sock . getOutputStream () ;

28 cad = new CadClient (i s , os) ;
}

30
pub l i c Apdu transmit (Apdu apdu) throws IOException , TLP224Exception{

32 cad . exchangeApdu (apdu) ;
r e turn apdu ;

34 }

36 pub l i c void powerUp () throws IOException , TLP224Exception{
cad . powerUp () ;

38 }

40 pub l i c void powerDown () throws IOException , TLP224Exception{
cad . powerDown () ;

42 }

Listing 2: Creating and exchanging APDU’s with applets.

After transmitting the Apdu object, it will contain the response bytes of the applet. The status
bytes can be retrieved using apdu.getSW1SW2(); the method apdu.getStatus() returns an
int representation of the status bytes. If data is included in the response, it can be retrieved
as follows:

byte [] respData = new byte [apdu . getLe ()] ;
2 System . arraycopy (apdu . getDataOut () , 0 , respData , 0 , apdu . getLe ()) ;

Assignment: Test simulated applet with apduio.jar.
Simulate the IdentityCard applet and write a Java program in a different project that tests
the simulated applet by verifying the PIN and visualizing the identity file. The apduio.jar
file should be added to the project as an external jar file. Try setting some break points
in the applet code and run the simulator in debug mode. It is also possible to include the
standard JRE in the applet project. It is then possible to use the functions of the JRE such as
System.out.println().

Assignment: Extend the applet with a certificate.
The sample code can be found in CertificateTemplate.txt. The byte array certificate

contains a hardcoded certificate. Implement the getCertificate() method and test the
implementation using the simulator. Visualize some fields from the certificate via a Java
program.

Some hints are provided. First, since the certificate is larger than 255 bytes, a mechanism that
truncates the certificate is required. Two approaches are possible. Either the host application
passes to the applet which part of the certificate is requested. This can be done using the P1

8

or P2 fields. The applet can also keep a counter that determines which block of the certificate
needs to be sent to the host application. Second, use data blocks of 240 bytes since it then
fits in the APDU buffer of the simulator. Finally, building a certificate from the ASN.1 DER

encoding in Java can be done using the following code:

C e r t i f i c a t e F a c t o r y certFac = C e r t i f i c a t e F a c t o r y . g e t In s tance (”X. 5 0 9 ”) ;
2 InputStream i s = new ByteArrayInputStream (encodedCert) ;

X509Cer t i f i c a t e c e r t = (X509Cer t i f i c a t e) certFac . g e n e r a t e C e r t i f i c a t e (i s) ;

4 Deploy smart card applications

Once the applet is written, the class files can be compiled (i.e. the class files are converted
to a CAP file). The converter only supports class files generated with a Java compiler of a
version lower or equal to 4. The converter uses a file that contains several parameters required
during the conversion (see Listing 3). It can be executed through the command-line using the
command: converter.bat -config paramFileName. The CAP file can now be passed to the
card with the open source program GPShell[6]. It uses a script file that contains the necessary
references and development keys to deploy applets on smart cards. To automate the whole
process, an Ant script was written. Some parameters, however, need to be adjusted depending
on the project configuration.

1 −out EXP JCA CAP
−c l a s s d i r .\ t a r g e t

3 −v
−exportpath ”C:\Program F i l e s \Java\ j a v a c a r d k i t −2 2 1 \ a p i e x p o r t f i l e s ”

5 −app le t 0x01 : 0 x02 : 0 x03 : 0 x04 : 0 x05 : 0 x06 : 0 x07 : 0 x08 : 0 x09 : 0 x00 : 0 x00 Ident i tyCard
be . msec . smartcard 0x01 : 0 x02 : 0 x03 : 0 x04 : 0 x05 : 0 x06 : 0 x07 : 0 x08 : 0 x09 : 0 x00 1 .0

Listing 3: Example script for generating CAP files.

The out parameter defines file types that are generated. The CAP file is required to deploy the
applet on the card, the others are optional. The classdir parameter references to the package
where the class files of the applet are stored. The v parameter enables verbose feedback about
the operations of the converter. The exportpath parameter references to the directory where
the export files (.EXP)8 of the used framework(s) is/are stored. The applet parameter defines
the AID, the name of the class extending the Applet base class, the package name and package
AID.

mode 201
2 gemXpressoPro

e n a b l e t r a c e

8. An export file contains the public API information for an entire package of classes. It defines the access
scope and name of a class and the access scope and signatures of the methods and fields of the class. An
export file also contains linking information used for resolving interpackage references on the card. An export
file does not contain any implementation and can, therefore, be freely ditributed by an applet developer to the
potential users of the applet.

9

4 e s t a b l i s h c o n t e x t
card connect

6 s e l e c t −AID A000000018434D00
open sc −s e c u r i t y 3 −keyind 0 −keyver 0 −key 47454 d5850524553534f53414d504c45

8 d e l e t e −AID 0102030405060708090000
d e l e t e −AID 01020304050607080900

10 i n s t a l l − f i l e smartcard . cap −pr iv 04 −sdAID A000000018434D00 −nvCodeLimit 4000
ca rd d i s connec t

12 r e l e a s e c o n t e x t

Listing 4: Example script for deploying applets using GPShell.

Line 2 defines the card type on which the applet will be deployed. Line 7 sets up a secure
session with the card; this requires a development key that allows you to place applets on
the card. Line 8 and 9 remove the original AIDs from the card. The previous version needs to
be removed if a new version is to be deployed on the card. Note that two delete commands
are issued. The first one removes the applet AID and the second removes the package AID.
Packages cannot be removed if applets within the package are still on the card. Line 10 installs
the applet on the card. This command requires the name of the CAP file and the AID of the
installer applet (sdAID). priv is an optional attribute. Setting that value priv to 4 selects
that applet by default. This means that the applet is automatically selected when the smart
card is inserted in the card reader. Hence, no select command needs to be sent. For further
information about the different commands and attributes that can be used, we refer to the
documentation that is included with the program. The program also comes with multiple
sample scripts for several types of cards.

Assignment: Deploy IdentityCard applet on a smart card.
Copy the Ant script and additional files found in deployAssignment.zip in the Tutorial
project. The script (projectBuilder.xml) requires the other files to deploy the identity applet
on your smart card. Some files might require slight modifications (paths to resources), depend-
ing on your project configuration, namely CAPGenerationScript.txt, projectBuilder.xml
and identityCard.txt (in the GPShell directory).

To deploy the applet, run the Ant script. When running the script for the first time, toggle
the run configuration window of the script (see figure 7), select the method(s) of the script
that need to be executed (see Figure 8) and set the script to run in the same JRE as the
project workspace (see Figure 9).

Figure 7: Toggle the ’run configuration’ window of the Ant script.

10

Figure 8: Select required method(s) for execution.

5 Writing Java client applications

From Java version 1.6, the package javax.smartcardio defines an API for communicating
with smart cards using ISO/IEC 7816-4 APDU’s. There are also methods that detect card
insertion and card removal. The CommandAPDU and ResponseAPDU class support the different
types of APDU’s9 described in section 1.2.

The listing below shows an example usage of the API for sending and receiving APDU’s. If
the classes from javax.smartcardio are not recognized by eclipse, try removing and adding the
JRE.

TerminalFactory f a c t o r y = TerminalFactory . ge tDe fau l t () ;
2 Lis t<CardTerminal> t e rmina l s = f a c t o r y . t e rmina l s () . l i s t () ;

Card card = te rmina l s . get (terminalNumber) . connect (”∗”) ;
4 CardChannel c = card . getBasicChannel () ;

byte [] comAPDUBytes = new byte [] {CLA, INS , P1 , P2 , Lc , data , Le } ;
6 CommandAPDU command = new CommandAPDU(comAPDUBytes) ;

ResponseAPDU resp = c . t ransmit (command) ;
8 byte [] rece ivedData = resp . getData () ;

i n t s t a t u s = resp . getSW () ;

Assignment: Write a Java application to test the applet on the smart card.
Write a Java program that visualizes the identity file stored on the card and some fields from
the certificate.

9. The full API can be consulted on http://java.sun.com/javase/6/docs/jre/api/security/

smartcardio/spec/javax/smartcardio/package-summary.html

11

Figure 9: Setting Ant script to execute in the same JRE as the workspace.

6 Cryptographic operations with Java Cards

The Java Card API has two packages javacard.security10 and javacardx.crypto11 that
contain classes and interfaces for various types of cryptographic algorithms. However, many
Java Cards only implement a subset algorithms available in the API. More information about
the implemented algorithms can be found in the specifications of the manufacturer. The
following sections describe how the Java Card API can be used to perform cryptographic
operations such as encryption, digital signatures and hashing on smart cards.

6.1 Random sequence generation

The RandomData class can be used to generate random sequences on the smart card. The
security of these sequences depends on the implementation of the smart card manufacturer.
Note that RandomData.ALG SECURE RANDOM is not implemented in the simulator;
RandomData.ALG PSEUDO RANDOM, however, is available.

1 byte [] b u f f e r = new byte [2 0] ;
RandomData rand = RandomData . g e t In s tance (RandomData .ALG SECURE RANDOM) ;

3 rand . generateData (bu f f e r , 0 , b u f f e r . l ength) ;

10. Package contents can be viewed in the JCDK or online:
http://raud.ut.ee/~tec/static/api/javacard2.1.1/javacard/security/package-summary.html.
11. Package contents can be viewed in the JCDK or online:
http://raud.ut.ee/~tec/static/api/javacard2.1.1/javacardx/crypto/package-summary.html.

12

6.2 Key generation

As symmetric keys are just random byte arrays, they can be generated with the RandomData

class. For asymmetric key pair generation, the class KeyPair is used.

1 shor t keyS ize = 512 ;
KeyPair kp = new KeyPair (KeyPair .ALG RSA, keyS ize) ;

3 kp . genKeyPair () ;
RSAPrivateKey privKey = kp . ge tPr iva t e () ;

5 RSAPublicKey pubKey = kp . ge tPub l i c () ;

It is also possible to create keys with a predefined modulus and exponent. For this purpose,
the KeyBuilder class is used. It generates empty key objects which can be initialized by
setting the modulus and exponent.

1 shor t o f f s e t = 0 ;
shor t keyS ize InBytes = 64 ;

3 shor t keyS i z e InB i t s = 512 ;
RSAPrivateKey privKey = (RSAPrivateKey) KeyBuilder . buildKey (

5 KeyBuilder .TYPE RSA PRIVATE, keyS ize InBi t s , f a l s e) ;
privKey . setExponent (privExponent , o f f s e t , keyS ize InBytes) ;

7 privKey . setModulus (privModulus , o f f s e t , keyS ize InBytes) ;

9 RSAPublicKey pubKey = (RSAPublicKey) KeyBuilder . buildKey (
KeyBuilder .TYPE RSA PUBLIC, keyS ize InBi t s , f a l s e) ;

11 pubKey . setExponent (pubExponent , o f f s e t , (shor t) 3) ;
pubKey . setModulus (pubModulus , o f f s e t , keyS ize InBytes) ;

Creating symmetric key objects is similar.

shor t keyS i z e InB i t s = 128 ;
2 AESKey symKey = (AESKey) KeyBuilder . buildKey (

KeyBuilder .TYPE AES TRANSIENT DESELECT, keyS ize InBi t s , f a l s e) ;
4 symKey . setKey (keyData , o f f s e t) ;

6.3 Encryption

Multiple algorithms for both symmetric and asymmetric encryption are available. Both are
possible with the Cipher class. As can be seen in the code listing below, an algorithm identi-
fier is required when creating a Cipher object. These algorithm identifiers are defined in the
Cipher class, examples are: Cipher.ALG AES BLOCK 128 CBC NOPAD and Cipher.ALG RSA PKCS1 OAEP.
Note that – if no padding is provided by the cipher (i.e. no AES implementation with padding
is available) – the input data needs to be block aligned.

Cipher c iphe r = Cipher . g e t In s tance (ALGORITHM, f a l s e) ;
2 c iphe r . i n i t (key , Cipher .MODE DECRYPT) ;

shor t encLength = c iphe r . doFinal (input , inpOf f s e t , length , output , ou tOf f s e t) ;

13

Initialization vectors for symmetric encryption in CBC mode can be set with the cipher.init(
key, MODE, iv, offset, length) method.

6.4 Digital signatures

Although the Signature class is mainly used to generate and verify signatures, multiple MAC

algorithms are supported.

1 S ignature s i g n a t u r e = Signature . g e t In s tance (S ignature . ALG RSA SHA PKCS1, f a l s e) ;
s i g n a t u r e . i n i t (privKey , S ignature .MODE SIGN) ;

3 shor t s igLength = s i g n a t u r e . s i gn (input , o f f s e t , length , output , 0) ;

5 s i g n a t u r e . i n i t (pubKey , S ignature .MODE VERIFY) ;
boolean va l = v e r i f y (cha l l enge , cha lO f f s e t , length , s i gnature ,

7 s i g O f f s e t , s igLength) ;

6.5 Hashing

The MessageDigest class can be used to generate several types of hashes.

1 MessageDigest d i g e s t = MessageDigest . g e t In s tance (MessageDigest .ALG SHA, f a l s e) ;
shor t hashLength = d i g e s t . doFinal (input , i nOf f s e t , length , output , ou tOf f s e t) ;

Assignment: Extend BasicIdentityCard applet with sign functionality.
To prove that the card actually contains the private key associated with the certificate,
a sign operation needs to be performed on a challenge that is sent to the card. This op-
eration requires the user to enter his pin. Therefore, implement the sign method in the
sample applet SignTemplate.txt. To test the implementation, simulate and/or deploy the
application on a smart card and test it by importing the eclipse project IdentityCardHost

and execute the ServiceProvider class found in package be.msec.identitycard. Note that
bcprov-jdk16-143.jar (included in the zip file) is a required library for the sample applica-
tion to run. Simulated and deployed applets can be tested using IdentityCard.SIMULATOR

and IdentityCard.SMARTCARD respectively, when requesting an instance from the IdentityCard
class in the main method. The template contains a sample implementation of the prior assign-
ments and the private key corresponding to the certificate as hard-coded attributes (modulus
and exponent of a 512 bit RSA private key are available in byte array representation).
Use the Signature.ALG RSA SHA PKCS1 algorithm for signatures12.

Assignment: Extend BasicIdentityCard applet with update functionality.
This extension allows to update the identity file remotely (e.g. by the government). A secure
session is set up between the server and the card. A new identity file can be sent to the
card over the channel. The secure channel ensures data confidentiality, data integrity, and
mutual authentication. To realize this, complete the secureSession, getRemainingData and
updateIdentity methods in the sample applet of UpdateTemplate.txt.

12. Signature.ALG RSA SHA PKCS1 PSS is not implemented in the simulator.

14

The secureSession method is called when the government initiates a secure session with the
card. The card receives an APDU which contains a 20 byte challenge c. The card then com-
poses the following message (where the operator ”||” defines a concatenation): asymEnc(Kses,
PKGov) || symEnc([sign(c, SKCard) || cert.length || cert || padding], Kses). In the above
expression, Kses defines a newly generated 128 bit AES session key. Since symmetric keys
are random byte arrays, they can be generated using the RandomData class. PKGov defines
a 512 bit RSA public key of the government. The byte array representation of the mod-
ulus and exponent of this key can be found in the sample applet. SKCard defines a 512
bit RSA private key of the card. The same private key as in the above assignment can be
used. The cert field defines the certificate of the card. The certificate used in the previ-
ous assignment can also be used here. The cert.length field defines the byte length of
cert. Use the Util class to convert a short to a byte array. Since the second part con-
sists of a symmetric encryption with an AES key and no cipher implementations for AES with
padding are available, the encrypted message needs to be block aligned. In AES, blocks of
16 bytes are used, which means the byte length of the encrypted message needs to be a
multiple of 16. This message exceeds 255 bytes and, therefore, is sent in several steps (see
getRemainingData instruction). Use the Cipher.ALG AES BLOCK 128 CBC NOPAD algorithm
for symmetric and the Cipher.ALG RSA PKCS1 algorithm for asymmetric encryption. Although
the Cipher.ALG RSA PKCS1 OAEP is more secure, it is not implemented by the simulator.

As illustrated above, the message consists of two concatenated encryptions. The first one is an
asymmetric encryption of the session key with the public key of the government. The second
one is a symmetric encryption of (1) a signature on the challenge with the private key of
the card, (2) the length of the card certificate, (3) the card certificate and (4) padding. It is
important that the message is constructed as indicated above to ensure compatibility with
the host application.

The getRemainingData method is used to send large amounts of data to the host application.
Realize this by maintaining a counter in the applet and implement the GET REMAINING DATA INS

instruction. This instruction sends consecutive blocks of 240 bytes of the buffered data to the
host application.

The updateIndentity method receives the new identity file encrypted with the session key.
This message is composed as follows: symEnc([hash(data) || data], Kses) where data is
replaced by: identityFile.length || identityFile || padding. The following operations
should be performed on the card upon receiving this message:

• Decrypt the message.
• Check the integrity of the data by comparing the hash (20 byte SHA1) with a self-

generated SHA1 hash of the data.
• Update the identity file of the card. Use the Util class to convert the length field to a

short and determine the bounds of the identity file.

To test the implementation, simulate and/or deploy the application on a smart card and test
it by executing the Government class found in package be.msec.identitycard. Simulated and
deployed applets can be tested using IdentityCard.SIMULATOR and IdentityCard.SMARTCARD

respectively, when requesting an instance from the IdentityCard class in the main method.

A sample implementation of this assignment can be found in finalAssignment.txt.

15

7 Requently Occuring Problems

• I have problems importing the sample application projects in my workspace.

Check that the privileges on the project files allow eclipse to read and write. In some
cases the .project file is set hidden. In that case, make the file visible.

• I get an error message when converting class files or using the apdutool.

First make sure that the JC HOME environment variable is set to the correct version of
the framework. If the error messages still occurs, verify that no program has defined a
CLASSPATH environment variable (the Belgian governmental eID middleware creates
this variable). If so, rename the variable to CLASSPATHOLD or redefine this variable
(set CLASSPATH=) via the command window prior to execution of the convertor.
In the latter solution, the changes effect only the context of the command window in
which the command was executed.

• When converting class files to a CAP file I receive a unsupported class file

format error. This error occurs when the class files were compiled with a too recent
version of the Java compiler. In eclipse this is easily changed by right clicking on the
project, chose properties consequently Java compiler and then tick the enable project
specific settings box and change the compiler compliance level to 1.4.

References

[1] “Iso/iec 7816.” http://www.iso.org/iso/search.htm?qt=7816&published=

on&active_tab=standards.
[2] “Java card technology.” http://java.sun.com/javacard/.
[3] “Top im gx4.” http://www.procard.pl/img/site/29/TOP_IM_GX4_Nov07.pdf.
[4] “Top dm gx4.” http://www.gemalto.com/products/top_javacard/download/TOP_DM_

GX4_Product_Information.pdf.
[5] “Global platform specifications.” http://www.globalplatform.org/

specificationscard.asp.
[6] “Gpshell.” http://sourceforge.net/projects/globalplatform/files/.
[7] Z. Chen, Java Card Technology for Smart Cards. Addison-Wesley, 2000.

16

